SÜREKLí AKIŞLI AÇIK SISTEMLER LÜLELER VE YAYICILAR

5-28 Sürekli akışlı adyabatik bir lülede, hava lüleye 300 kPa basınç, $200^{\circ} \mathrm{C}$ sıcaklık ve $45 \mathrm{~m} / \mathrm{s}$ hızla girmekte, 100 kPa basınç ve $110 \mathrm{~m} / \mathrm{s}$ hızla çıkmaktadır.Lülenin giriş kesit alanı $80 \mathrm{~cm}^{2}$ dir. (a) Lüleden akan havanın kütlesel debisini, (b) Havanın lüleden çıkış sıcaklığını, (c) Lülenin çıkış kesit alanını hesaplayınız. çözüm: (a) $1.09 \mathrm{~kg} / \mathrm{s}$ (b) $185^{\circ} \mathrm{C} \quad$ (c) $79.9 \mathrm{~cm}^{2}$

5-31 800 kPa basınç ve $400^{\circ} \mathrm{C}$ sıcaklıktaki su buharı, sürekli akışlı, adyabatik bir lüleye $10 \mathrm{~m} / \mathrm{s}$ hızla girmekte, 200 kPa basınç $300^{\circ} \mathrm{C}$ sıcaklıkta çıkmakadır, bu sıra 25 kW isı kaybı meydana gelmektedir.Çıkış hızını ve buharın lüleye çıkışındaki hacimsel debisini hesaplayınız. çözüm: $606 \mathrm{~m} / \mathrm{s}$ $2.74 \mathrm{~m}^{3} / \mathrm{s}$

5-33 Hava sürekli akışlı adyabatik bir lüleye 90 kPa basınç, $-10^{\circ} \mathrm{C}$ sıcaklık ve $180 \mathrm{~m} / \mathrm{s}$ hızla girmekte, 100 kPa basınçta giriş hızından düşük çıkmaktadır. (a) Havanın çıkış sıcaklığını, (b) Havanın çıkış hızını hesaplayınız.

TÜRBİNLER VE KOMPRESÖRLER

5-46 Su buharı sürekli akışlı adyabatik türbine 6 MPa basınç, $400^{\circ} \mathrm{C}$ sıcaklık ve $80 \mathrm{~m} / \mathrm{s}$ hızla girmekte, 40 kPa basınç ve yüzde 92 kuruluk derecesinde, $50 \mathrm{~m} / \mathrm{s}$ hızla çıkmaktadır.Buharın kütle debisi $20 \mathrm{~kg} / \mathrm{s}$ olduğuna göre, (a) Akışın kinetik enerjisindeki değişimi, (b) Türbinde üretilen gücü, (c) Türbin giriş kesit alanını hesaplayınız. çözüm: (a) $-1.95 \mathrm{kj} / \mathrm{kg}$, (b) 14.6 MW (c) $0.0119 \mathrm{~m}^{2}$

5-48 Su buharı sürekli akışlı bir adyabatik türbine 10 MPa basınç ve $500^{\circ} \mathrm{C}$ sıcaklıkta girmekte, 10 kPa basınç ve yüzde 90 kuruluk derecesiyle çıkmaktadır. Kinetik ve potansiyel enerji değişimlerini ihmal ederek, 5 MW güç üretilebilmesi için gerekli kütle debisini hesaplayınız. çözüm: $4.852 \mathrm{~kg} / \mathrm{s}$

5-50 Adyabatik bir hava kompresörü $10 \mathrm{~L} / \mathrm{s}$ debi ile hava 120 kPa basınç ve $20^{\circ} \mathrm{C}$ sıcaklıktan 1000 kPa basınç ve $300^{\circ} \mathrm{C}$ sıcaklığa sıkıştırmaktadır. (a) Kompresör için gerekli işi (b) Kompresörü çalıştırmak için gerekli gücü hesaplayınız.

5-53 Karbon dioksit sürekli akışlı adyabatik bir kompresöre 100 kPa basınç ve 300 K sıcaklıkta, $0.5 \mathrm{~kg} / \mathrm{s}$ debiyle girmekte, 600 kPa basınç ve 450 K sıcaklıkta çıkmaktadır.Kinetik enerji değişimlerini ihmal ederek, (a) Kompresör girişinde karbon dioksitin hacimsel debisini, (b) Kompresörü çalıştırmak için gerekli gücü hesaplayınız. çözüm: (a) $0.28 \mathrm{~m}^{3} / \mathrm{s}$ (b) 68.8 kW

5-30 Air is accelerated in a nozzle from $45 \mathrm{~m} / \mathrm{s}$ to $180 \mathrm{~m} / \mathrm{s}$. The mass flow rate, the exit temperature, and the exit area of the nozzle are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Air is an ideal gas with constant specific heats. $\mathbf{3}$ Potential energy changes are negligible. 4 The device is adiabatic and thus heat transfer is negligible. $\mathbf{5}$ There are no work interactions.

Properties The gas constant of air is $0.287 \mathrm{kPa} . \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$ (Table A-1). The specific heat of air at the anticipated average temperature of 450 K is $c_{p}=1.02 \mathrm{~kJ} / \mathrm{kg}$. ${ }^{\circ} \mathrm{C}$ (Table A-2).

Analysis (a) There is only one inlet and one exit, and thus
 the mass flow rate of air are determined to be

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(473 \mathrm{~K})}{300 \mathrm{kPa}}=0.4525 \mathrm{~m}^{3} / \mathrm{kg} \\
& \dot{m}=\frac{1}{\boldsymbol{v}_{1}} A_{1} V_{1}=\frac{1}{0.4525 \mathrm{~m}^{3} / \mathrm{kg}}\left(0.0110 \mathrm{~m}^{2}\right)(45 \mathrm{~m} / \mathrm{s})=\mathbf{1 . 0 9 4} \mathbf{~ k g} / \mathbf{s}
\end{aligned}
$$

(b) We take nozzle as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }} 70 \text { (steady) }}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m}\left(h_{1}+V_{1}^{2} / 2\right) & =\dot{m}\left(h_{2}+V_{2}^{2} / 2\right) \quad(\text { since } \dot{Q} \cong \dot{\mathrm{~W}} \cong \Delta \mathrm{pe} \cong 0) \\
0 & =h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2} \longrightarrow 0=c_{p, \text { ave }}\left(T_{2}-T_{1}\right)+\frac{V_{2}^{2}-V_{1}^{2}}{2}
\end{aligned}
$$

Substituting,

$$
0=(1.02 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})\left(T_{2}-200^{\circ} \mathrm{C}\right)+\frac{(180 \mathrm{~m} / \mathrm{s})^{2}-(45 \mathrm{~m} / \mathrm{s})^{2}}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}\right)
$$

It yields

$$
T_{2}=185.2^{\circ} \mathrm{C}
$$

(c) The specific volume of air at the nozzle exit is

$$
\begin{aligned}
& \boldsymbol{v}_{2}=\frac{R T_{2}}{P_{2}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(185.2+273 \mathrm{~K})}{100 \mathrm{kPa}}=1.315 \mathrm{~m}^{3} / \mathrm{kg} \\
& \dot{m}=\frac{1}{\boldsymbol{v}_{2}} A_{2} V_{2} \longrightarrow 1.094 \mathrm{~kg} / \mathrm{s}=\frac{1}{1.315 \mathrm{~m}^{3} / \mathrm{kg}} A_{2}(180 \mathrm{~m} / \mathrm{s}) \rightarrow A_{2}=0.00799 \mathrm{~m}^{2}=\mathbf{7 9 . 9} \mathbf{c m}^{2}
\end{aligned}
$$

5-34 Heat is lost from the steam flowing in a nozzle. The velocity and the volume flow rate at the nozzle exit are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy change is negligible. 3 There are no work interactions.

Analysis We take the steam as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

Energy balance:

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {syste }} \pi 0 \text { (steady) }}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m}\left(h_{1}+\frac{V_{1}^{2}}{2}\right) & \left.=\dot{m}\left(h_{2}+\frac{V_{2}^{2}}{2}\right)+\dot{Q}_{\text {out }} \quad \text { since } \dot{W} \cong \Delta \mathrm{pe} \cong 0\right) \\
h_{1}+\frac{V_{1}^{2}}{2} & =h_{2}+\frac{V_{2}^{2}}{2}+\frac{\dot{Q}_{\text {out }}}{\dot{m}}
\end{aligned}
$$

The properties of steam at the inlet and exit are (Table A-6)

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=800 \mathrm{kPa} \\
T_{1}=400^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
\boldsymbol{v}_{1}=0.38429 \mathrm{~m}^{3} / \mathrm{kg} \\
h_{1}=3267.7 \mathrm{~kJ} / \mathrm{kg}
\end{array} \\
& \left.\begin{array}{l}
P_{2}=200 \mathrm{kPa} \\
T_{1}=300^{\circ} \mathrm{C}
\end{array}\right\} \begin{array}{l}
\boldsymbol{v}_{2}=1.31623 \mathrm{~m}^{3} / \mathrm{kg} \\
h_{2}=3072.1 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

The mass flow rate of the steam is

$$
\dot{m}=\frac{1}{v_{1}} A_{1} V_{1}=\frac{1}{0.38429 \mathrm{~m}^{3} / \mathrm{s}}\left(0.08 \mathrm{~m}^{2}\right)(10 \mathrm{~m} / \mathrm{s})=2.082 \mathrm{~kg} / \mathrm{s}
$$

Substituting,

$$
\begin{aligned}
3267.7 \mathrm{~kJ} / \mathrm{kg}+\frac{(10 \mathrm{~m} / \mathrm{s})^{2}}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}\right) & =3072.1 \mathrm{~kJ} / \mathrm{kg}+\frac{V_{2}^{2}}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}\right)+\frac{25 \mathrm{~kJ} / \mathrm{s}}{2.082 \mathrm{~kg} / \mathrm{s}} \\
\longrightarrow V_{2} & =\mathbf{6 0 6 ~ m} / \mathrm{s}
\end{aligned}
$$

The volume flow rate at the exit of the nozzle is

$$
\dot{\boldsymbol{v}}_{2}=\dot{m} \boldsymbol{v}_{2}=(2.082 \mathrm{~kg} / \mathrm{s})\left(1.31623 \mathrm{~m}^{3} / \mathrm{kg}\right)=\mathbf{2 . 7 4} \mathrm{m}^{3} / \mathbf{s}
$$

5-36E Air is decelerated in a diffuser from $600 \mathrm{ft} / \mathrm{s}$ to a low velocity. The exit temperature and the exit velocity of air are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Air is an ideal gas with variable specific heats. $\mathbf{3}$ Potential energy changes are negligible. 4 The device is adiabatic and thus heat transfer is negligible. 5 There are no work interactions.

Properties The enthalpy of air at the inlet temperature of $50^{\circ} \mathrm{F}$ is $h_{1}=121.88 \mathrm{Btu} / \mathrm{lbm}$ (Table A-17E).
Analysis (a) There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. We take diffuser as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

or,

$$
h_{2}=h_{1}-\frac{V_{2}^{2}-V_{1}^{2}}{2}=121.88 \mathrm{Btu} / \mathrm{lbm}-\frac{0-(600 \mathrm{ft} / \mathrm{s})^{2}}{2}\left(\frac{1 \mathrm{Btu} / \mathrm{lbm}}{25,037 \mathrm{ft}^{2} / \mathrm{s}^{2}}\right)=129.07 \mathrm{Btu} / \mathrm{lbm}
$$

From Table A-17E,

$$
T_{2}=\mathbf{5 4 0} \mathbf{R}
$$

(b) The exit velocity of air is determined from the conservation of mass relation,

$$
\frac{1}{\boldsymbol{v}_{2}} A_{2} V_{2}=\frac{1}{\boldsymbol{v}_{1}} A_{1} V_{1} \longrightarrow \frac{1}{R T_{2} / P_{2}} A_{2} V_{2}=\frac{1}{R T_{1} / P_{1}} A_{1} V_{1}
$$

Thus,

$$
V_{2}=\frac{A_{1} T_{2} P_{1}}{A_{2} T_{1} P_{2}} V_{1}=\frac{1}{4} \frac{(540 \mathrm{R})(13 \mathrm{psia})}{(510 \mathrm{R})(14.5 \mathrm{psia})}(600 \mathrm{ft} / \mathrm{s})=\mathbf{1 4 2} \mathbf{~ f t} / \mathbf{s}
$$

5-49 Steam expands in a turbine. The change in kinetic energy, the power output, and the turbine inlet area are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Properties From the steam tables (Tables A-4 through 6)

$$
\left.\begin{array}{c}
P_{1}=6 \mathrm{MPa} \\
T_{1}=400^{\circ} \mathrm{C}
\end{array}\right\} \begin{gathered}
\boldsymbol{v}_{1}=0.047420 \mathrm{~m}^{3} / \mathrm{kg} \\
h_{1}=3178.3 \mathrm{~kJ} / \mathrm{kg}
\end{gathered}
$$

and

$$
\left.\begin{array}{l}
P_{2}=40 \mathrm{kPa} \\
x_{2}=0.92
\end{array}\right\} h_{2}=h_{f}+x_{2} h_{f g}=317.62+0.92 \times 2392.1=2318.5 \mathrm{~kJ} / \mathrm{kg}
$$

Analysis (a) The change in kinetic energy is determined from

$$
\Delta k e=\frac{V_{2}^{2}-V_{1}^{2}}{2}=\frac{(50 \mathrm{~m} / \mathrm{s})^{2}-(80 \mathrm{~m} / \mathrm{s})^{2}}{2}\left(\frac{1 \mathrm{~kJ} / \mathrm{kg}}{1000 \mathrm{~m}^{2} / \mathrm{s}^{2}}\right)=-1.95 \mathrm{~kJ} / \mathrm{kg}
$$

(b) There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{l}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }}^{\pi 0(\text { steady })}}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m}\left(h_{1}+V_{1}^{2} / 2\right) & =\dot{W}_{\text {out }}+\dot{m}\left(h_{2}+V_{2}^{2} / 2\right) \quad(\text { since } \dot{\mathrm{Q}} \cong \Delta \mathrm{pe} \cong 0) \\
\dot{W}_{\text {out }} & =-\dot{m}\left(h_{2}-h_{1}+\frac{V_{2}^{2}-V_{1}^{2}}{2}\right)
\end{aligned}
$$

Then the power output of the turbine is determined by substitution to be

$$
\dot{W}_{\text {out }}=-(20 \mathrm{~kg} / \mathrm{s})(2318.5-3178.3-1.95) \mathrm{kJ} / \mathrm{kg}=14,590 \mathrm{~kW}=\mathbf{1 4 . 6} \mathbf{~ M W}
$$

(c) The inlet area of the turbine is determined from the mass flow rate relation,

$$
\dot{m}=\frac{1}{\boldsymbol{v}_{1}} A_{1} V_{1} \longrightarrow A_{1}=\frac{\dot{m} \boldsymbol{v}_{1}}{V_{1}}=\frac{(20 \mathrm{~kg} / \mathrm{s})\left(0.047420 \mathrm{~m}^{3} / \mathrm{kg}\right)}{80 \mathrm{~m} / \mathrm{s}}=\mathbf{0 . 0 1 1 9} \mathbf{m}^{2}
$$

5-51 Steam expands in a turbine. The mass flow rate of steam for a power output of 5 MW is to be determined.
Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 The device is adiabatic and thus heat transfer is negligible.
Properties From the steam tables (Tables A-4 through 6)

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=10 \mathrm{MPa} \\
T_{1}=500^{\circ} \mathrm{C}
\end{array}\right\} h_{1}=3375.1 \mathrm{~kJ} / \mathrm{kg} \\
& \left.\begin{array}{l}
P_{2}=10 \mathrm{kPa} \\
x_{2}=0.90
\end{array}\right\} h_{2}=h_{f}+x_{2} h_{f g}=191.81+0.90 \times 2392.1=2344.7 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

Analysis There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. We take the turbine as the system, which is a control volume since mass crosses the boundary. The energy balance
 for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of ent energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }}^{\pi 0(\text { steady })}}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{m} h_{1} & =\dot{W}_{\text {out }}+\dot{m} h_{2} \quad(\text { since } \dot{Q} \cong \Delta k e \cong \Delta p e \cong 0) \\
\dot{W}_{\text {out }} & =-\dot{m}\left(h_{2}-h_{1}\right)
\end{aligned}
$$

Substituting, the required mass flow rate of the steam is determined to be

$$
5000 \mathrm{~kJ} / \mathrm{s}=-\dot{m}(2344.7-3375.1) \mathrm{kJ} / \mathrm{kg} \longrightarrow \dot{m}=\mathbf{4 . 8 5 2} \mathbf{~ k g} / \mathrm{s}
$$

5-53 Air is compressed at a rate of $10 \mathrm{~L} / \mathrm{s}$ by a compressor. The work required per unit mass and the power required are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. 3 Air is an ideal gas with constant specific heats.

Properties The constant pressure specific heat of air at the average temperature of $(20+300) / 2=160^{\circ} \mathrm{C}=433 \mathrm{~K}$ is $c_{p}=1.018$ $\mathrm{kJ} / \mathrm{kg} \cdot \mathrm{K}$ (Table A-2b). The gas constant of air is $R=0.287 \mathrm{kPa} \cdot \mathrm{m}^{3} / \mathrm{kg} \cdot \mathrm{K}$ (Table A-1).
Analysis (a) There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{c}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }}^{\pi 0} \text { (steady) }}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{W}_{\text {in }}+\dot{m} h_{1} & =\dot{m} h_{2} \quad(\text { since } \Delta \mathrm{ke} \cong \Delta \mathrm{pe} \cong 0) \\
\dot{W}_{\text {in }} & =\dot{m}\left(h_{2}-h_{1}\right)=\dot{m} c_{p}\left(T_{2}-T_{1}\right)
\end{aligned}
$$

Thus,

$$
w_{\mathrm{in}}=c_{p}\left(T_{2}-T_{1}\right)=(1.018 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(300-20) \mathrm{K}=\mathbf{2 8 5 . 0} \mathbf{~ k J} / \mathbf{k g}
$$

(b) The specific volume of air at the inlet and the mass flow rate are

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(20+273 \mathrm{~K})}{120 \mathrm{kPa}}=0.7008 \mathrm{~m}^{3} / \mathrm{kg} \\
& \dot{m}=\frac{\boldsymbol{v}_{1}}{\boldsymbol{v}_{1}}=\frac{0.010 \mathrm{~m}^{3} / \mathrm{s}}{0.7008 \mathrm{~m}^{3} / \mathrm{kg}}=0.01427 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Then the power input is determined from the energy balance equation to be

$$
\dot{W}_{\mathrm{in}}=\dot{m} c_{p}\left(T_{2}-T_{1}\right)=(0.01427 \mathrm{~kg} / \mathrm{s})(1.018 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(300-20) \mathrm{K}=\mathbf{4 . 0 6 8} \mathbf{~ k W}
$$

5-56 CO_{2} is compressed by a compressor. The volume flow rate of CO_{2} at the compressor inlet and the power input to the compressor are to be determined.

Assumptions 1 This is a steady-flow process since there is no change with time. 2 Kinetic and potential energy changes are negligible. $\mathbf{3}$ Helium is an ideal gas with variable specific heats. $\mathbf{4}$ The device is adiabatic and thus heat transfer is negligible.

Properties The gas constant of CO_{2} is $R=0.1889 \mathrm{kPa} . \mathrm{m}^{3} / \mathrm{kg} . \mathrm{K}$, and its molar mass is $M=44 \mathrm{~kg} / \mathrm{kmol}$ (Table A-1). The inlet and exit enthalpies of CO_{2} are (Table A-20)

$$
\begin{aligned}
& T_{1}=300 \mathrm{~K} \rightarrow \bar{h}_{1}=9,431 \mathrm{~kJ} / \mathrm{kmol} \\
& T_{2}=450 \mathrm{~K} \rightarrow \bar{h}_{2}=15,483 \mathrm{~kJ} / \mathrm{kmol}
\end{aligned}
$$

Analysis (a) There is only one inlet and one exit, and thus $\dot{m}_{1}=\dot{m}_{2}=\dot{m}$. The inlet specific volume of air and its volume flow rate are

$$
\begin{aligned}
& \boldsymbol{v}_{1}=\frac{R T_{1}}{P_{1}}=\frac{\left(0.1889 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(300 \mathrm{~K})}{100 \mathrm{kPa}}=0.5667 \mathrm{~m}^{3} / \mathrm{kg} \\
& \dot{\boldsymbol{v}}=\dot{m} \boldsymbol{v}_{1}=(0.5 \mathrm{~kg} / \mathrm{s})\left(0.5667 \mathrm{~m}^{3} / \mathrm{kg}\right)=\mathbf{0 . 2 8 3} \mathbf{~ m}^{\mathbf{3}} / \mathbf{s}
\end{aligned}
$$

(b) We take the compressor as the system, which is a control volume since mass crosses the boundary. The energy balance for this steady-flow system can be expressed in the rate form as

$$
\begin{aligned}
\underbrace{\dot{E}_{\text {in }}-\dot{E}_{\text {out }}}_{\begin{array}{l}
\text { Rate of net energy transfer } \\
\text { by heat, work, and mass }
\end{array}} & =\underbrace{\Delta \dot{E}_{\text {system }}^{\pi 0(\text { steady })}}_{\begin{array}{c}
\text { Rate of change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}=0 \\
\dot{E}_{\text {in }} & =\dot{E}_{\text {out }} \\
\dot{W}_{\text {in }}+\dot{m} h_{1} & =\dot{m} h_{2} \quad(\text { since } \dot{Q} \cong \Delta \mathrm{ke} \cong \Delta \mathrm{pe} \cong 0) \\
\dot{W}_{\text {in }} & =\dot{m}\left(h_{2}-h_{1}\right)=\dot{m}\left(\bar{h}_{2}-\bar{h}_{1}\right) / M
\end{aligned}
$$

Substituting

$$
\dot{W}_{i n}=\frac{(0.5 \mathrm{~kg} / \mathrm{s})(15,483-9,431 \mathrm{~kJ} / \mathrm{kmol})}{44 \mathrm{~kg} / \mathrm{kmol}}=\mathbf{6 8 . 8} \mathbf{~ k W}
$$

